Parallel vs. Distributed Computations

Networking – Review

Outline:

1. Concurrent Computations: parallel vs. distributed

2. Java Support for Distributed Computing

3. Computer Networks and Protocols – Review

· Requirements – connectivity, scalability, reliability and robustness (e.g. through graceful degradation), support for diverse applications, high performance, fairness;

Dealing with complexity in

· Providing connectivity for a large and dynamically changing set of clients – network hierarchies (internets)

· Supporting diverse applications– identifying common communication patterns,

· Data transfer (and related transformation) from application to application -- hierarchy, encapsulation, information hiding in layering and protocols.

· Network architectures: OSI and Internet

1. Distributed Computing

Concurrent computations are broadly divided in two classes

parallel

distributed_________
granularity

fine

coarse

coupling

tight

loose
distance

small

geographically distributed

communication
small,

large

delays

homogeneous

can vary

synchrony

often synchronous

asynchronous

processors

known

unknown

network

topology

known

unknown

message

ordering

known

unknown

delivery times

deterministic

nondeterministic

Examples:

massively parallel

internet chat, e-mail

computations, e.g.

supercomputer

solving partial differential

equations

2. Java Support for Distributed Computing

· Basic Network Programming: exchange of information between more than one machine through sockets
· Remote Method Invocation (RMI): performs operations/procedures (methods) on a remote machine on objects residing on the remote machine

· Common Object Request Broker (CORBA) use code written in other languages and running on different architectures

· JDBC, known as Java DataBase Connctivity: connect to database that may be on a remote machine: interfaces Java objects to platform specific SQL (structured query language) used by most databases

(servlets, JSP

· J2EE: Servlets, JSP, Enterprise Java Beans (EJB): isolate business logic from connectivity

· JINI, JavaSpaces:: allows to dynamically add and remove devices/applications to/from the network

mechanism for sharing, coordination, communication in distributed applications (proprietary tuple-spaces, based on Gelernter’s Linda prototype)

3. Computer networks and protocols - Review
network - collection of information processing nodes that are interconnected and can communicate with each other
Examples: telephone network, cable network, dumb terminals attached to mainframe, computer networks.

The main difference between computer and all other remaining network is that computer network consist of general purpose programmable hardware and thus can handle different types of data, (e.g. text, image, voice, video), as opposed to being specialized (and optimazed) for a particular type of data (telephone for voice, cable for video, etc.).

Requirements: A network should

· provide connectivity: trivial if it were not for the large number of participants

· have the potential to adjust its size and functionality as needed, either expanding to global proportions or reducing to a limited area, a property referred to as scalability;

· withstand changes and/or failures in hardware and software (e.g. from adding new nodes or functionality, failing links or nodes) without abrupt disturbances, a property referred to as reliability or robustness; in case failure is unavoidable a robust system exits gracefully (principle of graceful degradation.)

· support diverse applications, such as teleconferencing, video-on-demand, distributed computing, digital libraries.

· have high performance;

· allow fair access for all participants.

Links, Nodes and Clouds: circuit-switched vs. packet-switched networks.
[image: image1.wmf]

FT

Network

Data Link

Physical

Link

P

 Link: physical medium for signal transmission, e.g. coaxial cable, optical fibre

[image: image2.wmf]

HTT

FT

Network

Data Link

Physical

Link

P

P

 Node: computer

 Cloud: network

Direct links:

a) point-to-point

b) multiple access

Large networks cannot be built with direct links, therefore

Indirect connectivity among a set of cooperating nodes is achieved by sending the information from node A to node B through a sequence of intermediate nodes. The intermediate nodes act as “switches”, and the networks are referred to as switched networks.

Switched network:

Two Main Switching Techniques:

· circuit switched: a physical connection or dedicated circuit is established between the end points, after which the information is transmitted . Necessarily this implies that time is lost for establishing the connection before any data is sent.

prototype: telephone system. (T, 130)
· packet switched: blocks of data, called packets, are sent from node to node without first establishing a connection between sender and receiver. The entire packet is received by the intermediate node, checked for errors and then resent to the next (intermediate) node. This transmission technique is referred to as store-and-forward.
prototype: computer networks.

Key differences:

· circuit switching reserves required capacity (bandwidth) statically and in advance while packet switching acquires and releases it as needed. Thus in circuit switching, any unused capacity is wasted, while packet switching may give up unused; bandwidth to packets from/to unrelated transmissions, as no circuits are dedicated.

· packet switching can provide speed and code conversion and some error correction along the way;

· in packet switching packets can arrive in wrong order at destination, something obviously impossible in circuit switching.

Dealing with Complexity in Providing Connectivity – Network Hierarchies

Indirect connections can be established not only between individual computers, but also between independent networks, resulting in internetworks, or internets for short. According to the Internet’s convention generic internetworks are of networks are denoted with lower case i while the TCP/IP Internet with a capital case I. The nodes connecting networks in an internet are called routers or gateways

internet:

Internets can be viewed as computing nodes, and therefore interconnected to build an internet of internets. This process can continue and result in a nesting or hierarchy of internets.

In order to achieve communication between nodes in a network with indirect connectivity one further needs:

· a method for uniquely identifying sources and destinations, or an addressing scheme. Each node is assigned a byte (bit sequence, typically 6 bits) string, called address, that uniquely identifies the node within the network;

· a method to determine the path of any message from source to destination through the intermediate nodes, called routing. The source to destination or pair wise communication is the simplest type of communication between nodes. Other commonly used communication patterns are

broadcast – a source node sends messages to all nodes in the network,

and

multicast – a source node sends messages to a subset of (not necessarily all) nodes in the network.

Dealing with Complexity in Supporting Diverse Applications - Identifying Common Services and Basic Communication Patterns

Packet flows must undergo a fairly complex transformation in order to become easy to use by an application program. Therefore it is more accurate to think of a network as providing communication services to the applications, rather than delivering packets to them.

Main Idea:
· Identify the common services required by important groups of applications and implement them as part of the network once, instead of incorporating them in every application

· The network is viewed as providing logical channels over which the application processes communicate; each channel provides a set of services required by the corresponding application.

· Hide complexity of the network from application without overly constraining the application designer.

Question: What functionality should the channels provide?

· guaranteed delivery of all packets, or is some loss permissible;

· privacy of information;

· packet delivery in same order as sent;

· small delays;

· etc.

In general the network provides a variety of channel types and each application selects the one that best fits its needs.

Identifying common communication patterns based on important application classes:

· File Transfer Protocol (FTP): sending/retrieving files to/from remote host. A process, called client, requests a file from another process, called server. The communication is of type request/reply.

· Digital Library: Retrieving data, text, images, multimedia objects from digital libraries, e.g. through WWW. Communication is of type request/reply.

· Video-on-demand a) download entire video and play - request/reply; b) establish channel for video stream – message stream communication.

· Videoconferencing: two way channel needed -- message stream communication,

· no need for guaranteed delivery of all messages,

but need to

· satisfy timing constraints
Example: the size of an image, called frame, depends on the resolution;

for 1/4 standard TV image 352 x 240 pixels with 24 bits/pixel and 1B = 8 bits

frame size = 247.5 KB or ca. 250 KB

frame rate = 25-30 frames/s for television quality and

15 frames/s still ok;

in practice stream of frames (messages) of 10 frames/s
· receive messages in same order as sent
· two way communication
· support multicast for more than one party to participate in the video conference
· possibly privacy.
Tradeoffs:

· What functionality is needed?

Small number of abstract channel types

vs.

Sufficient number of services to satisfy application needs.

There is always a gap between the requirements of the application and the services offered by the network. This gap is sometimes referred to as the semantic gap and the challenge is to keep it as narrow as possible.

· Where should the functionality be implemented?

At end nodes of communication channel, thus keeping switches/routers simple

vs.

Distributed over channel, thus unburdening the end hosts

Reliability

Goal: Hide failures from user, i.e. provide some fault-tolerance

Failure Types: based on the level the error occurs;

· bit level : single bit (bit error) or sequence of bits (burst error) corrupted
Cause: typically outside forces – power surges, lightening, other transmission interference (occurs rarely: 1/(106-107) in copper wire and 1/(1012-1014) in optical fibre)

What to do? - correction is sometimes possible, e.g. if known which bits are corrupted, otherwise packet is dropped and sender may be asked to retransmit.
· Packet level: complete packet lost
Cause: uncorrectable bit, or congested node drops packet (more likely), or software mistakenly sent packet to wrong destination (seldom).

What to do? retransmit, but it is difficult to decide whether packet lost or just late.
· Link / Node level

Cause: link is cut or computer crashes

What to do? Restore link/node (can take a long time), or rerout traffic around failed link/node (requires additional software and thus overhead). The difficulty is to to distinguish between a failed or merely flaky link, and a failed ore merely slow node

Performance: bandwidth, latency, QoS.

Two main performance parameters:

· Bandwidth (or Throughput) B: transmitted bits per unit time measured in Mbps or Mb/s

· Latency (or Delay) L: time a message needs to travel from source to destination (link, channel, network), measured in seconds

Another time related parameter is

Round Trip Time RTT: time to send one bit from source to destination and back

Typical values for transcontinental transmission are ca. 24 ms (5000-7000 km, depends on physical medium)

Let

M – size of message

d – distance traveled

v – speed of light in physical medium – maximum speed signal can travel

(3x108 m/s for vacuum, 2.3x108 m/s in cable, 2.0x108 m/s in fiber)

Latency Components:

P – propagation delay: speed of light delay in medium: P = d/v

T – transmission time: time to transmit message of size M given bandwidth B: T = M/B

Q – queuing delay

L = P + T + Q = d/v + M/B + Q

For a small message: M = 1 b

L = d/v + 1/B + Q = RTT/2

latency is determined by propagation delay, bandwidth unimportant.

For large message: M >> 1 b

L = d/v + M/B + Q = (d/v + 1/B + Q) + (M-1)/B (RTT/2 + M/B

 RTT/2

latency is determined by bandwidth, propagation delay unimportant

Dealing with Complexity in Transmitting and Transforming Data from one Application to Another: Layering and Protocols

Main idea for dealing with complexity:

· Structure network at multiple levels of abstraction – hierarchies.

· Each abstraction level, or layer, captures some important aspect of the system and incorporates it into one or more model objects. Objects embody functionality by grouping related operations (principle of encapsulation). Objects hide the complexity of their implementation from other objects, (principle of information hiding); and only provide an interface for other components to access/manipulate their functionality

Example: To the application programmer a “channel”, that hides the complexities of the data transmission, is a convenient abstraction for dealing with underlying network

Note: There can be more than one object at the same level, e.g. the request reply and message stream channel in the following layered network system

In computer networks the objects making up the layers are called

protocols – specifications (and corresponding programs implementing these specifications) that define (provide) the communication service between higher level objects running on different computers. Each protocol provides two different interfaces

· service interface – between protocol and objects that want to use the service and are on the same computer; defines operations that local objects can perform on the protocol.
· peer-to-peer interface – between the protocol and its peer on the remote machine; defines form and meaning of message exchange between protocol peers to implement the communication service

Example:

Protocol Basics:

· Except at the hardware level peer-to-peer protocols communicate indirectly, by passing messages.

· Multi-layer systems are represented by protocol graphs with nodes corresponding to the protocols and edges to a depends on relationship, e.g. RRP and MSP are two alternatives for process-to-process channels that depend on HPP for providing a host-to-host connectivity service.

· Typically applications require the services no of only one, but of a sequence of protocols, called protocol stack, e.g. the application interfaces with RRP, that in turn interfaces with HHP, resulting in the stack RRP/HHP. HHP then sends the message to its peer HHP on the remote side, which delivers it to the RRR, and RRP to the remote application process.

· The term protocol is commonly used with two different meanings:

(i) the abstract interface, defining the operations of the service interface and the semantics of the exchanged messages;

(ii) the module implementing the interface. To differentiate between the two the term protocol specification is used for the former.

· Obviously there are many protocol graphs that satisfy the requirements of an application class. General policies for the form and meaning of a protocol graphs are established by standardization bodies, such as

International Standards Organization (ISO)

Internet Engineering Task Force (IETF)
An operational view of protocol suits

Sending a message using a protocol stack involves transmitting

· the application data

· control information about the protocol sequence of the stack

Question:

What structure of the message will allow modularity of design and uniformity/simplicity of processing?

Main Idea:

Assume that an application is serviced by a

protocol stack (P1, P2,…Plast).

· Control information about protocol P1is placed into a byte string (up to a dozen bytes) and included into the message. P1 does not care or know what the type of the application data is (e.g. data, vide, audio).

· The resulting message of (P1, data) is considered as data by the next protocol P2. The procedure used for the application data in the first step is now applied to (P1, data), i.e. information about P2 placed in message that becomes (P2, P1, data). Again P2 is unaware what is in (P1, data).

etc. until (Plast,…, P2, P1, data) sent through the network to the remote site

· At the receiving site the control information for each protocol is stripped from the message, one control string at a time at the corresponding protocol level, starting with Plast until, at the last level, only the application data remain.

When the control information is placed in front (back) of the message it is referred to as header (trailer).

This mode of operation provides that any number of different protocol modules are handled in a uniform way, by including/encapsulating control information at each level and keeping the specifics of the data type within a given module, hiding it from the other modules – principles of encapsulation and information hiding.

Encapsulation & Information Hiding: High-level messages are encapsulated in low-level messages, irrespective of the specific data types

Multiplexing and Demultiplexing of Messages:

The ideas of multiplexing and demultiplexing packets over a link can be applied to messages from different applications sent over a channel.

In order to identify the application to which a message belongs the first protocol used by the application includes in the header an identifier that is unique to that application and is referred to as demultiplexing, or demux key.

Most protocols support multiplexing, e.g. RRP, HHP, MSP. However, there is no uniform agreement among protocols, even within the same network architecture, on what constitutes a demux key, e.g. demux keys of 8, 16, 32 bits are used, and one or two header fields used.

Open System Interconnection (OSI) Architecture

Introduced by International Standard Organization (ISO).

ISO together with International Communications Union (ITO) publishes a series of protocol specifications base on the OSI architecture, called the X.dot series – X.25, X.400, X.500, etc.

Not a protocol graph per se, but a reference model for a protocol graph that has seven layers.

Layer:

Unit Info Handled & Implementation:

· Physical

bits. Ethernet, ISDN, PPP, T3, CATV
· Data/Link

collection of bits, referred to as frames

Typically implemented by network adapters & device drivers running on the operating system (OS), i.e. host receives frames not bits.

· Network

packets (or datagrams in IP terminology)
and their routing within a switched network
host-to-host communication (hop-to-hop in a path)

Protocols: X.25, Frame Relay, ATM (all three are virtual circuit); IP

These first three layers are present in all nodes (end as well as interior nodes)

· Transport

message or segment in what was referred as

process-to-process channel

end-to-end communication (with possible ack)

· Session
threading, multiprogramming, managing client sessions on the server, etc.; provides names space used to tie together different transport streams that are part of a single application, e.g. combine audio and video into a teleconferencing application
e.g. login session, RPC call, ORB/RMI invocation

· Presentation
format of data exchanged between peers, e.g. wheter int is 16, 32, 64 bits long, whether most or least significant bit transmitted first, the format of video stream; data conversions (ASCII-UNICODE, COM-CORBA)

· Application

e.g. FTP, TELNET, etc.

Internet or TCP/IP Architecture

Introduced by the International Engineering Task Force (IETF). Evolved out of ARPANET funded by Advanced Research Project Agency (ARPA), US Dept of Defense, before OSI reference model.

TFTP - Trivial File Transport Protocol

NV - Network Video

Layer:

1. Lowest level: includes wide variety of network protocols, Net1, NETetc., e.g. Ethernet, FDDI. These protocols are implemented by a combination of hardware (e.g. adaptor) and software (e.g. device driver). Some of these protocols may have themselves several layers, but the architecture does not presume anything about them.

2. Internet Protocol (IP) supports interconnection of multiple networking technologies into a single logical network.

3. Two main end –to-end (or transport) protocols providing logical channels to application programs

· Transmission Control Protocol (TCP): reliable byte-stream channel

· User Datagram Protocol (UDP): unreliable datagram (message) delivery channel
4. Application: FTP, TELNET

Note: Difference between application protocol and application
Application programs use application level protocol, e.g. Netscape, Internet Explorer, other browsers use HTTP (HyperText Transport Protocol). Confusingly sometimes the same name is used for the application and the protocol (e.g.FTP)

Internet Characteristics:

· Hourglass shape, narrow at the IP middle. IP defines common method for exchanging packets among large number of network technologies.

· Arbitrary number of transport protocols can operate above IP. Thus delivering messages host-to-host is completely separated from providing useful process-to-process communication.

· In order to propose a new protocol one must produce a specification and at least one (preferably two) implementation.

A final note on a cultural characteristic of the IETF: a proposal of a new protocol must include specifications and at least one (preferably two) implementations. The emphasis is on working code and is exemplified by the quote on T-shirts commonly worn at IETF meetings:

“We reject kings, presidents and voting. We believe in rough consensus and running code”

David Clark, MIT

References: This handout follows ch.1 in

Larry L. Peterson, Bruce S. Davie: “Computer Networks – A Systems Approach”, 3d ed, Morgan Kaufmand Publishers, 2003

Additional Readings:
James F. Kurose, Keith W. Ross: “Computer Networking - A Top-Dowd Approach Featuring the Internet”. Addison Wesley.

Douglas E. Comer: “Computer Networks and Internets, Prentice Hall.

Andrew S. Tanenbaum: “Computer Networks”, Prentice Hall.

A

peer-to-peer interface

service interface

Router

End

node

End

node

End

node

End

node

End

node

Router

Application programs

Process-to-process channels

Request/Reply

Channel (RRP)

Message stream

Channel (MSP)

Host-to-host connectivity (HHP)

Hardware

File Application

e.g. FTP

Digital library application

Teleconferencing

Application

Tele-

conferencing

Digital

library

FTP

Digital

library

HHP

MSP

RRP

FTP

Tele-

conferencing

HHP

MSP

RRP

Protocol

High-level

object

Protocol

High-level

object

Host 1

Host 2

HHP

Data

RRP

Data

RRP

Data

Application

HHP

RRP

Data

RRP

Data

frames

packet

message

Application

Presentation

Session

Transport

Network

Data Link

Physical Link

Physical Link

Data Link

Network

Physical Link

Data Link

Network

Transport

Session

Presentation

Application

Physical Link

Data Link

Network

Application

HHP

RRP

bits

Application: e.g. FTP, telnet, SMTP, e-mail, etc.

Network

TCP

Transmission

Control Protocol

FTPP

IP

Internet Protocol

Present in every node

Intermediate nodes

UDP

User

Datagram Protocol

HTT�P

NV

TFT�P

TCP

UDP

IP

NET1

NET2

NETlast

Router

Spring 2003 CS 667: Networking Review

 17 of 17

Zlateva

